MAY 11 2ea$ 3: 51‘ PM FR DYKEMA GOSSETT PLLCB2S@68673 TO 917838729306 P.
Serial No.: 09/973,069
Docket No.: 66848-001
-REMARKS

This Amendment is in response to the Office Action of February 15, 2005
in which the Examiner rejected claims 31, 32, 34-38 as allegedly anticipated by
Endicott U.S. Patent No. 5,404,525.

The Examiner rejected claim 33 as unpatentable over Endicott '525.

The Examiner’s rejection is respectively traversed fpr the reasons set forth
below.

Endicott describes a method for routing on an object of an enhanced
Object Oriented Programming (OOP) environment, such that it becomes possible
to create versions of object classes, and to change the version of an object
instance from one version to another, without having to recompile everything as
in C++, and without performance penalties as in Smalltalk. To achieve this
objective, Endicott uses various data structures as a way to locate (i.e., find the
addreés of) objects, interfaces, and methods.

The present invention deals with the problem of creating‘ and instantiation
of composite object types in a system for automatic control of real world
entities, for example in industrial processes (the present invéntion uses the term
“object type” whereas Endicott uses the term “object class”. These terms are
more or less equivalent). A fundamental part of the method is the concept of
object structures. Unlike traditional object class hierarchies, these strﬁctures
organize object instances (not classes), and can be based on any kind of
relationship between object instances. Object structures are used by process
engineers and operators, as well as b\) application programs, as a way to

" navigate among the typically very large amount of objects found in a process

control system.

7
PAGE 7/16* RCVD AT 5/1112005 4:01:04 PM [Eastemn Daylight Time) * SVR:USPTO-EF XRF-1/8 * DNIS:8729306 * CSID:2028068673° DURATION (mm-5s):04-52

Serial No.: 09/973,069
Docket No.: 66848-001

MAY 11 2885 3:51 PM FR DYKEMA GOSSETT PLLC@23068673 TO S17038725306 P.08

A composite object type in the present invention is an object type (class),

which holds references to other object types. Being references to object types

but not actual instances, these references are called formal instances. The

formal instances are arranged in groups, each group referring to a structure.

When the composite object type is instahtiated, for each group and farmal

instance an actual instance is created and placed in the structure referred to

from the group. Thus, when instantiated, a composite object type results not

only in a single object instance, but in multiple object instances of different

object types which are placed in different structures. In addition, as these object

instances are placed in structures, they may be modified to adapt to how they

relate to other object instances in the structures where they are placed. This is

particularly useful in a control system, where the exact behavior of a control

function depends on in which context it is beihg used.

These objectives as weil as the solutions described in the present

invention are completely different from those described by Endicott.

The Examiner made épeciﬁc rejections to the claims. What follows is a

detailed side by side comparison of the Examiner's comments, where the

numbers in the left column represent the paragraph numbers in the office action,

with the Applicant’s responses.

‘Claimiriejections

| Tnventors:cominients.

1. Claims | Endicott discloses a method of
31, 36, claim 31, a system of claim 36,
and 37 and a computer program
comprising program code
means of claim 37 for
performing steps of a method
for automatic contral of real
world entities, wherein the real
world entities are represented
as instances of objects, and

wherein the control of an

Endicott does not disclose a method,
system, or program code for automatic
control of real world entities. In fact,
Endicott’s only mention of the word
“control” is in column 1 line 45, in relation
to lack of control over development and
maintenance of large and complex
computer programs.

Endicott’s invention deals with the problem

of changing versions of objects without
having to recompile all object instances

8

PAGE 8/16:* RCVD AT 511112005 4:01:04 PM [Eastern Daylight Time]* SVR:USPTO-EF XRF-1/3 * DNIS:8729306 * CS1D:2029068673 DURATION (mm-ss}.04-32

MAY 11 2885 3:51 PM FR DYKEMA GOSSETT PLLCB29888673 TO 817838729306 P.B9

Serial No.: 09/973,069
Docket No.: 66848-001

Elair ‘rejections - P “Inventor’s:comments
individual entity depends on the (which is needed with e.g. C++), and
relationship of the entity to without the performance penalties seen
other entities (column 5, line e.g. with Smalltalk
15 - column 6, fine 48). In column 5, line 15 - column 6, line 48,

Endicott describes the internal organization .
of a computer, and the concept of class :
hierarchies in object oriented programming
(OOP). These are well known concepts in
the prior art. There is no reference in
Endicott to a method for control of real
world entities where the control of an
individual entity depends on how it relates
to other entities as in the present

invention,
| a. Creating at least two Column 5, lines 42 -47 read: “For
structures, wherein each example, portions of client programs 120
structure is based on a certain and operating system 135 will typically be
type of relationship between loaded into primary memory to execute,
object instances (¢column 5, while source data files will typically be
lines 42-68). stored on magnetic or optical disk storage
devices.”

In column 5 lines 48-68 Endicott describes
the concept of object class hierarchies. An
object class hierarchy is a structure of
object classes based on class relationships, |
i.e.; it is built up from super classes and
subclasses.

In object oriented technology it is very
important to distinguish between object
classes and object instances. A class
defines the characteristics (primarily data

| and methods) of all instances of that class,
while instances are the actual objects. In
Endicott Fig. 2, John and Joe are instances
of the object class Engineer.

An object class can be a specialization
(subclass) of another object class (super
class). In Endicott Fig. 2, the class
Personnel has three subclasses: Lawyer;
Engineer; and Manager.

Step a of claim 1 of the present invention
describes the step of creating at least to
structures based on certain types of
relationships between object instances, not |
object classes. Examples of such
relationships are given in the text and in
subsequent claims. Endicott does not
involve any such structures, and the
reference to Endicott column S lines 42-68

9
PAGE 9/46°* ROVD AT 514112005 4:01:04 PM [Easter Daylight Time)* SVR:USPTO-EFXRF-1/8* DNIS:8726306 * CSID:2029068673* DURATION (mm-5s).04-52

MAY 11 28B5 3:52 PM FR DYKEMA GOSSETT PLLCP29B68673 TO 9178387239306 P.1O
Senal No.: 09/973,069
Docket No.: 66848-001
Clginy rejections [nventor's comments

is thus believed to be irrelevant,

b, Creating at least one
composite object type
comprising at least two formal
instances, wherein each formal
instance contains information
about instantiation of a certain
object type, and wherein at
least one such object type
defines a function for control of
a real worid entity (column 5,
line 58 column 6, line 27 and
column 12, line 57 - column 13,
line 35).

In column 5 line 58 — column 6 line 27
Endicott describes a class hierarchy (see
above).

Step b of claim 1 of the present invention
describes the step of creating a composite
object, which is an object type that
“includes” at least two other object types.
This “inclusion” is not a class relationship
(a building can contain a pump, but Pump
is obviously not a specialization Building).
The structures described in the present
invention are thus not class hierarchies.

Step b further includes the element that at
least one of the thus included object types
defines functions for control of a real world
entity. Endicott does not mention control
of real world entities.

In column 12, line 57 - column 13, line 35,
Endicott describes how a method program
is located when called by a client program.
Endicott describes how the object class is
located, the object instance loaded, the
proper interface is located and the update
method invoked. Endicott uses various
data structures as a way to locate (i.e. find
the address of) objects, interfaces, and
methods. These data structures are
described in overview in column 3 line 44
ff, and in detail in the figures 2, 4A-D, 5,
9A-1, 9A-2, and 10A. These data
structures are clearly not examples of
structures based on relationships between
object instances, such as functional
containment or location.

¢. Locating each formal
instance in at least one of two
groups of formal instances,
wherein each group is
associated with a structure, and
at least two groups are
associated with different
structures (column 5, line 55 -
column 6, line 48).

In column 5, line 55 - column 6, line 48,
Endicott describes the concept of object
class hierarchies. The structures referred
to in step ¢ of claim 1 of the present
invention are structures between object
instances (see above)

d. Instantiation of the
composite object type, wherein
for each group of formal
instances corresponding real

In column 13, lines 47-68, Endicott
describes an example where a new version
of an object class is created. When the
new version is created, new versions of all

10

PAGE 10416:* RCVD AT /1112005 4:01:04 PM [Eastern Daylight Time]* SVR:USPTO-EFXRF-1/8* DNIS:8729306 * CSID:2029068673 * DURATION (mm-5s):04-32

2p@S S3:52 PM FR DYKEMA GOSSETT PLLC@298BE8673 TO 9170838729306 P.11
Serial No.: 09/973,069
Docket No.: 66848-001
Claitirejections - A Tnventors comments 3

world object mstances are
created and located in the
structure with which the group
is associated (column 13, lines
47-68)

subclasses are also created. Endicott
further allows instances of both versions of
the object class to exist simultaneously
(engineer Sam is promoted to the new
version, while engineers John and Joe
remain with the previous version).

The objective of the present invention is
completely different, namely to make it
possible to define composite object types
(classes) which, when instantiated, result
not only in a single abject instance, but in
multiple object instances of different object.
types, where the instances are placed in
different structures as defined in the

definition of the composite object type,
Step d of claim 1 describes how this

instantiation and placement is done. This is:|
clearly different from what Endicott
describes in column 13, lines 47-68.

e. Changing at least one object
instance thus created, said
object instance defining a
function for control of a real
world entity, such that said
function for control is adapted
to the relationship of the object
instance to other object
instances in at least one of the
resultant structures such that
the control of the corresponding
real world entity is adapted to
the relationship of said entity to
other entity (column 14, lines
39-60).

In column 14 lines 39-60, Endicott
describes an example of how an object is
promoted from one version of its object
class to another version. Endicott’s
objective is that such changes should not
affect client or method programs that deal
with parts of the object that are not
affected by the change (column 14 fine 30-
39).

The objective of the present invention is
entirely different, namely to make it
possible to define object types (classes)
which, when instantiated, result not only in
a single object instance, but in muitiple
object instances of different object types,
where the instances are placed in those
structures (of object instances) that are
pointed out in the definition in the object
type. Step e of claim 1 describes how a
control function defined by such object
instance is adapted to fit with the
relationships to other instances in
structures where it is placed.

An example of where such adaptation is
needed is the control function for a valve,
which needs to behave differentiy when it
is part of a level control loop from when it
is part of a flow control loop.

There is no mention of control functions for
control of a real world entity in Endicott,

11

PAGE 11/16 * RCVD AT 5/1112005 4:01:04 PM [Eastem Daylight Time] * SYR:USPTO-EFXRF-8* DNIS:8729306* CSID:2029058673 * DURATION fim-ss}: 04-32

MAY 11 2885 3:53 PM FR DYKEMA GOSSETT ‘PLLCB239BE8E?3 TO 917838723306 P.12

Serial No.: 09/973,069
Docket No.: 66848-001

such control function is adapted to how the’
entity is related to other entities when the :
object is placed in object structures. In
particular, this is not described or disciosed
in Endicott column 14, lines 39-60.

2. Claim Endicott discloses all the As argued above,. Endicott does not

32 limitations of claim 31, In disclose any of the limitations of claims 31,
addition, Endicott discloses a 36, and 37.
method wherein at least one A composite object type in the present
formal instance is of a invention is an object type (class), which
composite object type (column | holds references to other object types.
13, lines 47-68 and Fig 2). Being references to object types but not

actual instances, these references are
called formal instances.

Endicott does not disclose or describe any
concept that is similar to the concept of
composite object types with formal
instances according to the present
invention.

The cited lines from Endicott are part of
the section "ADDITION OF A NEW
INSTANCE VARIABLE DEFINITION TO A
NOM CLASS”. An “instance variable” is part
of the anatomy of an individual object - it
holds data that is specific to an instance,
such as the name of an employee. In
Endicott’s example, a new instance
variable is added to the class Personnel,
thus creating a new version of that class,
Personnel_II. The new instance variable is
intended to hold the number of patents.
each employee (instance of Personnel_II)
has produced. This is an example of
changing an object class and is not in any
way related to the concept of composite
object types and formal instances.

Endicott uses the term “composite”, but
only in relation to the data structures that
make up the implementation of the NOM
object oriented environment. In column 3
lines 44 ff, Endicott describes three key
composite data structures of the NOM
object oriented environment: the object
structure, the interface table, and the
method table. These structures are related
to the implementation of Endicott’s object
oriented environment. In particular,
Endicott's object structure is a table that

12
PAGE 12/16:* RCVD AT 5/112005 4:01:04 PM [Eastem Daylight Time] * SVR:USPTO-EF XRF-1/8* DNIS:8729306 * CSID:2029068673 * DURATION (mm-5s).04-52

MAY 11 2885

Serial No.:

Docket No.:

09/973,069
66848-001

3:53 PM FR DYKEMA GOSSETT PLLCB23SB68673 TO 9170387239306 P.13

Glaimirejections.

- .gl‘nventor s comments

contains data that characterizes an obJect,
and location information about (pointers
to) the interface table. Note that “location”
in Endicott refers to a location (address,
pointer, or index) in the computer system,
whereas “location” in the present invention .
refers to the physical location of real world
entities, such as a pump is placed in a
room that is part of a building.

Endicott Fig. 2 shows a classical object
class hierarchy. There is no example of a
composite object type with formal
instances as defined in the present
invention,.

3. Claim
34

_Endicott discloses all the

limitations of claim 31. In
addition, Endicott discloses a
method wherein a formal
instance comprises a
description of how the
properties of the corresponding
object type are to be changed
when a real world instance is
created (column 12, line 57 -
column 13, line 22 and column
15, line 54 - column 16, line
13).

This claim should read “... to be changed
when an_actual instance is created”. The
invention does not create real world
instances.

As noted above, Endicott does not disclose
any of the limitations of claims 31, 36, and
37.

The concept of formal instances is related
to the concept of composite objects. As
argued above, Endicott does not disclose
or describe any concept that is equal or
similar to the concept of composite object
types according to the present invention.
Specifically, Endicott does not describe or
disclose how object types are changed
when actual instances are created from
formal instances.

In column 12 line 57 - column 13 line 22,
Endicott describes how a method program
is located when called by a client program.
The example assumes that the client
program wants to update the instance
variable Salary for the object instance
John. Endicott describes how the object
class is located, the object instance loaded,
the proper interface is located and the
update method invoked.

Invoking a method of an object (including
localizing the class, loading the object,
finding the interface and invoking a
method) is fundamentally different from
creating an object instance. The cited lines
are therefore irrelevant to claim 34 of the
present invention.

Column 15, line 54 - column 16, line 13 is

13

PAGE 13/16* RCVD AT 5/11/2005 4:01:04 PM [Eastem Dayfight Time] * SVR:USPTO-EFXRF 1/ * DNIS:8729306 * CSID:2020068673* DURATION (mm-5s):04-32

MAY 11 2885 S3:53 PM FR DYKEMA GOSSETT PLLCB2986867?3 TO 917838723306 P.14

Serial No.: 09/973,069
Docket No.: 66848-001

‘Claith rejections

s comments o4

i i::art ot"'.the section "NOM

METAMORPHOSIS”. Endicott defines this as
chanaging the version of a particular object
instance (column 15 lines 44-53). This is
clearly different from creating an instance
of a composite gbject type wherein a

formal instance comprises a description of .
how its corresponding object type shall be
changed when the actual instance is
created.

BN RIS et T T et e

4. Claim | Endicott discloses all'the
35 limitations of claim 31. In _
addition, Endicott discloses a
} method wherein at least one
formal instance represents a
group of formal instances
(column 5, line 55 - column 6,
Line 10).

As argued above, Endicott does not
disclose any of the limitations of claims 31,
36, and 37.

Endicott does not disclose or describe any
concept that is similar to the concept of
composite object types according to the
present invention. Specifically, Endicott
does not disclose or describe how a
composite object is defined as comprising
formal instances. Hence, Endicott does not
describe how a formal instance can
represent a group of formal instances.

In the present invention, the step of letting |

a formal instance represent a group of
formal instances provides a way of _
referring to the entire group by referring to
the one formal instance that represents it,

In column 5, line 55 - ¢olumn 6 line 10,
Endicott describes an object class
hierarchy and class inheritance. It is not
understood how this can be interpreted as
being related to having a formal instance
representing a group of formal instances.

S. Claim Endicott discloses all the

38 limitations of claim 36. In
addition, Endicott discloses a
computer program wherein the
program code means are stored
in a computer readable medium
(column 5, lines 1-10).

Endicott does not disclose a computer
program as defined in claim 38 of the
present invention.

Endicott column 5 lines 1-10 are part of
the section “"BRIEF DESCRIPTION OF THE
DRAWINGS”, and specifically describe
drawings 7, 8A, 8B, 9A, 9B, 10A, and10B.
Neither of these figures describes a
computer program wherein the program
code means are stored in a computer
readable medium.

6. Claim { Claim 33 is rejected under 35
33 U.S.C. 103(a) as being
unpatentable over Endicott et al
(U.S. 5,404,525).

As pointed out above, the present
invention deals with structures of object
instances. These are fundamentally
different from class hierarchies, in that

14

PAGE 14/16* RCVD AT 5/1112005 4:01:04 PM [Eastern Daylight Time] * SVR:USPTO-EF XRF-1/8* DNIS:8729306 * CSID:2029068673* DURATION (mm-ss):04-52

3:54 PM FR DYKEMA GOSSETT PLLCR2SBE8E?3 TO 917838729306 P.

MAY 11 28085 15
. r -
Serial No.: 09/973,069
Docket No.: 66848-001

Clatmirejectlbns

'Inventor s comments

Endicott discloses all the
limitations of claim 31. In
addition, Endicott discloses a
method wherein one structure
is based on functional
properties of the real world
entities and another structure is
based on the physical location
of the real world entities
(column 2, lines 7-35 and
column 6, lines 12-48).

Note that Endicott does not
explicitly disclose that his
invention has a structure that is
based on the physical location
of real world entities. However,
Endicott implies in column 2,
lines 7-35 that it was known in
the art at the time the applicant
invention was made, Endicott
uses the example of a Dog that
had eyes and four legs. In this
matter, Endicott implies that
the objects "eyes" and "legs"”
are located with the object
"Dog." One of ordinary skill
would likely incorporate this
background teaching with
Endicott's as it would allow for
better encapsulation and
reusability of programmed
entities (column 1, line 5g -
column 2, line 6).

hey are based on relatlonshlps between
object instances, not between object
classes. Examples of relationships are
functional containment and location.
Examples of functional containment are a
processing line, which includes a tank,
which includes a level control loop, which
includes a pump and a valve. It is obvious
that the pump and the valve are not
specializations of a control loop, which in
turn is not a specialization of a tank, which
is not a specialization of a processing line.

Endicott does not describe the parts of a
Dog as ghjects. In fact, Endicott does not
mention “eyes” and “legs” as being parts
of the object Dog at all. Endicott describes
the object class Canine, which defines data
such as name, color, number of eyes,
number of legs, etc. (column 2 lines 7-35).

' This data is part of the object Canine, not

separate objects that are associated with
it.

Endicott does not mention anything about
organizing object instances into structures.
Further, as shown above, the statement
that “eyes” and "legs" are objects that are
located with the object "Dog” is thus
believed to be incorrect.

15

PAGE 15/16:* RCVD AT 5/1112005 4:01:04 PM [Eastem Daylight Time] * SVR:USPTO-EF XRF-1/3* DNIS:8720306 * CSID:2029068673* DURATION (mm-s).04-32

MAY 11 2885 3:54 PM FR DYKEMA GOSSETT PLLCB29868673 TO 917038729306 P.16

Serial No.: 08/973,086%
Docket No.: 56848-001

It is believed that the invention is patentable over the art record, it is
respectfully requested that the Examiner reconsider his rejection of the claims,
the allowance of which is earnestly solicited.

Respectfully submitted,
DYKEMA GOSSETT PLLC

B .

ca

No. 25,505

are, Third Floor West
1300 I Styeet, N.W.

Washingfon, DC 20005-3353
202Y906-8626

DCO1\92337.1
IDVPD

16
| PAGE 16/16 * RCVD AT /1112005 4:01:04 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/3* DNIS:8729305* CSID:202068673 * DURATION tmm-):04-32, . 1 = wexe B

	2005-05-11 Applicant Arguments/Remarks Made in an Amendment

